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Abstract
Isospectrality of the planar domains which are obtained by successive unfolding
of a fundamental building block is studied in relation to isolength spectrality
of the corresponding domains. Although an explicit and exact trace formula
such as Poisson’s summation formula or Selberg’s trace formula is not known
to exist for such planar domains, equivalence between isospectrality and
isolength spectrality in a certain setting can be proved by employing the matrix
representation of ‘transplantation of eigenfunctions’. As an application of the
equivalence, transplantable pairs of domains, which are all isospectral pair of
planar domains and therefore counter-examples of Kac’s question ‘can one hear
the shape of a drum?’, are numerically enumerated, and it is found that, at least
up to the domain composed of 13 building blocks, transplantable pairs coincide
with those constructed by the method due to Sunada.

PACS numbers: 05.45.-a, 02.70.Hm

1. Introduction

A famous question of Kac, ‘can one hear the shape of a drum?’, is concerned with isospectrality
of the planar domains [1]. The bounded domains D1 and D2 are called isospectral if
two domains have the same eigenvalue spectrum up to the degree of multiplicities, i.e.
spec(D1) = spec(D2), where

spec(D) = {µ1 � µ2 � · · · | �fi = µifi in D, fi = 0 on ∂D (i = 1, 2, . . .)}. (1)

Kac’s question is alternatively stated as ‘are the planar domains D1 and D2 congruent if
spec(D1) = spec(D2)?’.

Isolength spectrality of the domains is analogously introduced for the length spectrum
of closed billiard trajectories on the corresponding domains D1 and D2. Also for isolength
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spectrality one can pose the same question as Kac. The problem we discuss here is equivalence
between isospectrality and isolength spectrality on the planar domains of a certain class.

If either the eigenvalue spectrum or the length spectrum determines the shape of the
domain uniquely, the equivalence problem becomes obvious since a congruent pair of domains
trivially provides both the isospectrum and isolength spectrum. However, it is known that there
exists a non-trivial case where equivalence between isospectrality and isolength spectrality is
concluded. Such a situation was first reported by Milnor [2]. It is known that there exist the
self-dual lattices L1 and L2 in R16 which are not congruent in the sense that no rotation of R16

carriesL1 toL2, nevertheless they own the same length spectrum. That is, the quotients of R16

by these lattices, R16/L1 and R16/L2, are non-isometric but isolength spectral. Furthermore
the isospectrality can also be derived from the exact trace formula which represents the duality
relation between the spectrum of the Laplacian acting on the flat torus and the corresponding
length spectrum of closed geodesics. For the flat torus which is defined as a quotient Rn/�

of Rn by a lattice � of rank n, the set of eigenvalues of Helmholtz equation �f = µf is
explicitly given as

{4π2‖σ‖2 | σ ∈ �∗}. (2)

Here �∗ denotes the dual lattice of �, i.e. �∗ = {σ ∈ Rn | σ · γ ∈ Z ∀γ ∈ �}. The
corresponding length spectrum, which is the set of closed geodesics on the same torus, is
expressed just by the distance between the origin and each lattice point on �:

{‖γ ‖ | γ ∈ �}. (3)

The two spectra are connected via Poisson’s summation formula or Jacobi identity:∑
σ∈�∗

exp(−4π2‖σ‖2t) = (4πt)−n/2 vol (Rn/�)
∑
γ∈�

exp(−‖γ ‖2/4t). (4)

This trace formula immediately leads us to equivalence between the isospectrality and isolength
spectrality, that is, two flat tori are isospectral if and only if they have the same length spectrum.
Milnor’s work is not a direct answer to the original version of Kac’s question because it is not
concerned with the planar domains, but from Milnor’s example one learns that there really
exist non-congruent domains with a common length and eigenvalue spectrum.

In more general cases where two Riemannian manifolds have a common finite Riemannian
covering, a sufficient condition for isospectrality was given by Sunada [3]. Let G be a finite
group which acts freely on a certain compact Riemannian manifoldM by isometries. Sunada’s
theorem tells us that the quotientsM/H1 andM/H2 are isospectral if there exist two subgroups
H1 and H2 of G, which satisfy the so-called almost conjugate condition:

�([g] ∩H1) =� ([g] ∩H2) (5)

for any conjugacy class [g] in G. The proof is based on a sort of trace formula, which can
be regarded as a prototype of the Selberg trace formula [3, 4]. If subgroups H1 and H2 are
conjugate in the usual sense, then these quotients M/H1 and M/H2 are merely isometric.
However it had been known that there exist triplets (G,H1, H2) such that H1 and H2 are
almost conjugate but not conjugate inG. Such triplets were used to construct some isospectral
but non-isometric pairs of Riemannian surfaces by Buser [5] and Brooks and Tse [6]. Sunada
also proved that M/H1 and M/H2 have the same length spectrum of closed geodesics if the
condition (5) is fulfilled [3]. Therefore, in this case, isolength spectrality is derived together
with isospectrality from the same source.

In the case of planar domains, after a quarter of a century, Gordon et al [7] also solved Kac’s
original question negatively by constructing an isospectral but non-congruent pair of planar
domains (see figure 1). For the construction, they used a version of Sunada’s theorem, which
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Figure 1. The isospectral pair of domains constructed by Gordon et al.

was extended to the orbiford (billiard) setting by Bérard [8]. Since the source of isospectrality
was Sunada’s theorem, isolength spectrality naturally follows as well.

However, if there exists an isospectral pair of planar domains which are not given
by Sunada’s construction, equivalence of isospectrality and isolength spectrality cannot
straightforwardly be discussed. In fact, no one can exclude such a situation because the Sunada
condition gives merely a sufficient condition for the isospectrality and also isolength spectrality.
Nevertheless, as we will show below, it is possible to relate them through the notion of so-
called transplantation of eigenfunctions. The transplantation method was originally invented
by Buser et al [9] to reexamine isospectrality of some given domains. They constructed 17
families of isospectral pairs of domains based on the Sunada method, and confirmed their
isospectrality by the transplantation method. As far as planar domains are concerned, these
pairs are, to the authors’ knowledge, all isospectral pairs ever known.

It should be remarked that the transplantation method is not independent of the Sunada
theorem. In the above case of quotient manifolds, Brooks gave an alternative proof of Sunada’s
theorem based on the transplantation method, which appears to be a necessary condition for
the assumption of the theorem [10]. However equivalence between these two methods has not
been proved in the case of planar domains.

The organization of this paper is as follows. We first explain the transplantation method
in section 2 and give its matrix representation in section 3. In section 4, we provide a proof
showing that isospectrality and isolength spectrality is equivalent for a certain class of domains,
that is those domains constructed by successive unfolding of a fundamental building block.
All isospectral pairs ever known belong to this class. In section 5 we enumerate isospectral
pairs of domains and compare them with the table obtained by Buser et al [9]. It is shown that
our labour in searching for isospectral pairs is considerably reduced as a by-product of our
result in section 4. Section 6 is devoted to a summary and discussion of our work.

2. Transplantation method

Let us consider two domains D1 and D2 as in figure 2. We here describe the transplantation
method by taking an example of the proof of isospectrality based on it. We follow the exposition
given by Buser et al [9].

Transplantation is a procedure which cuts an arbitrary function f defined on D1 into its
restrictions on each building block, say f1, f2, . . . , f7, and rebuilds a new function g on D2

by superposing f1, f2, . . . , f7. Note that such a procedure relies crucially on the peculiarity
of the domains, which are composed of several pieces obtained by successive reflection of a
certain common building block.
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Figure 2. An isospectral pair of domains and the transplantation of eigenfunctions.

By the transplantation shown in figure 2, any eigenfunction f with any eigenvalue µ on
D1 is transplanted onto D2 so that the transform g is also an eigenfunction with the same
eigenvalue µ. This can actually be confirmed by checking the following conditions:

• �g = µg in the interior of each piece.
This is always true because g is given as a sum of several fi on each piece.
• The function g is smoothly connected on all reflecting segments.

This is not trivial, but true in this example. On the reflecting segment r in figure 2, for
example, −f2 + f3 − f5 fits smoothly with +f2 + f6 − f7 because f3 and f6, or −f5

and −f7, were smoothly connected on the original domain D1 and −f2 and f2 also fit
smoothly on the segment by the reflection principle. We can also check the smoothness
condition on the other reflecting segments in the same way.
• The function g vanishes on the boundary of D2.

This is not trivial, but true in this example. On the boundary segment b in figure 2, for
example, −f2 + f3 − f5 vanishes because −f2 cancels f3 there and f5 was already zero.
We can also check the boundary condition on the other boundary segments in the same
way.

One more condition is invertibility of transplantation, which guarantees that the dimension
of the space belonging to the eigenvalue µ, i.e. the multiplicity of µ, on D1 is equal to the
dimension on D2 or less. This is expressed as the condition,

• The transplantation is invertible as a linear map.
This is not trivial, but can be easily checked to be true for this example.

Thus these four conditions lead to Spec(D1) ⊂ Spec(D2). The last condition becomes the
check to see that any eigenfunction with any eigenvalue ν on D2 can be transplanted onto D1

conversely; that is, spec(D2) ⊂ spec(D1). In this way, we know that these two domains are
isospectral.

These are conditions for eigenfunctions satisfying Dirichlet boundary conditions, but they
are also Neumann isospectral. This can be verified by changing all the minus signs before
each element of the transplanted function fi to plus signs when one superposes them on the
transformed domain. Conversely it is possible to construct Dirichlet isospectral pairs once
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Table 1. The correspondence between the unfolding rule and the edge-coloured graph.

Unfolding rule Edge-coloured graph

Pieces ←→ Vertices
Reflecting segments ←→ Edges
Kind of segment ←→ Colour of edge

Neumann isospectra are at hand. The procedure is as follows: (i) for both domains, attach
the code σi = 1 or −1 to each building block i such that the codes of neighbouring blocks
are different and (ii) let the building block i with code σi be transformed onto the building
block i ′ with code σ ′i , and if σiσi ′ = 1 then the sign before fi is set to be plus and otherwise
minus. It is easy to show that the resulting pair of domains are Dirichlet isospectral. Therefore,
isospectrality with respect to the Dirichlet and Neumann boundary conditions is equivalent.

We also remark that the above proof is independent of the choice of building block. This
means that this example represents not only a single pair of isospectral domains but also a
family of isospectral pairs, which are realized by replacing a building triangle simultaneously
with a different shaped building block. In particular, we can obtain the example of Gordon
et al in figure 1 by replacing the building block in figure 2 by a heptagon.

3. Transplantability and its matrix representation

In this section, we provide an alternative and more transparent condition for the transplantabil-
ity of eigenfunctions. In what follows, we limit ourselves to the class of domains constructed by
successive reflection of a fundamental building block, which we call unfolded domains, since
transplantation of eigenfunctions is most simply performed between such domains. In order to
make successive unfolding possible, each building block is supposed to have three line segments
at which the building block is reflected. The domains shown in figures 1 and 2 are the examples.
Hereafter we denote by N the number of building blocks composing the unfolded domain.

The whole shape of the unfolded domain is determined by the choice of the building
block and the rule specifying unfolding. The unfolding rule can be identified with the edge-
coloured graph and the correspondence is given in table 1. Each piece obtained by reflection
is represented by the vertex of the graph, and the reflecting segment by its edge. The three
boundary segments of the building block are distinguished by the colour of the edges. Some
boundary segments of the building block form the boundary of the whole unfolded domain,
and we represent the edge corresponding to one such boundary segment as the closed loop.
An example of an edge-coloured graph is demonstrated in figure 3.

The structure of a graph is also represented by the adjacency matrix. That is, the reflecting
rule to generate an unfolded domain P is given by the triplet of adjacency matricesMP

a ,MP
b

andMP
c defined as follows:

(MP
γ )ij
=

{
1 if the piece i is adjacent to j by segment γ

0 otherwise.
γ = a, b, c. (6)

Diagonal element (MP
γ )ii

is set to be unity if the piece i has the boundary segment γ . The
adjacency matrix is, in general, not uniquely determined even if one fixes the graph because
there remains a freedom to determine the order of labelling vertices. In this setting, two
unfolded domains P andQ are congruent if there exists a permutation matrix U such that

UMP
a U
−1 = MQ

a UMP
b U
−1 = MQ

b UMP
c U
−1 = MQ

c . (7)
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Figure 3. An example of an edge-coloured graph representing an unfolding rule. The three types
of curve (solid, dotted, broken with dots) denote three colours.

Here the permutation matrix is defined as an N ×N matrix in which each row or column has
only one unity, and all the other elements are zero. If the building block has some symmetry,
for example reflection symmetry with respect to a certain axis, it might happen that a non-
permutation matrix connects the congruent pair P and Q. However, if one destroys the
symmetry by changing the shape of the building block, such an ‘accidental’ situation can be
avoided. The condition (7) for a permutation matrix U , therefore, becomes the necessary and
sufficient condition for the congruency of P andQ in this sense.

Next we give the condition for transplantability of eigenfunctions of two given unfolded
domains using the adjacency matrices. By transplantability we mean the possibility that the
isospectrality of a pair of unfolded domains can be verified by the transplantation method.

The transplantation procedure described in section 3 is explicitly expressed as follows.
Let P and Q be two unfolded domains composed of N copies of a common building block.
Let T : L2(P ) � f �→ g ∈ L2(Q) be a linear transformation. We say that the transformation
T is a transplantation if the transform g is obtained by cutting and pasting f , namely,

gi =
N∑
j=1

Tijfj i = 1, 2, . . . , N (8)

where fj and gi denote restrictions of f and g = Tf to each piece, respectively. Also as
mentioned in section 2, it is not trivial at all that the transform g becomes an eigenfunction on
the transformed domain at this stage.

For given unfolded domains P and Q, we say that they are transplantable if there exists
an invertible transplantation T satisfying the following conditions:

TMP
a T
−1 = MQ

a TMP
b T
−1 = MQ

b TMP
c T
−1 = MQ

c . (9)

It can be easily checked that smoothness on all the reflecting segments and the boundary
conditions on the unfolded domains are satisfied if the above conditions are fulfilled. Here, the
existence of the inverse matrix T −1 corresponds to the invertible condition. The condition (9)
is the one for transplantability of Neumann boundary condition, but, as remarked in section 2,
it is equivalent to transplantability of the Dirichlet case. As seen in the previous section, P
andQ are isospectral if they are transplantable.

Note that if T is a permutation matrix, then P andQ are merely congruent. Therefore, in
order to construct an isospectral but non-congruent pair of unfolded domains, we must find a
matrix satisfying the condition (9), but not a permutation matrix.
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a

b

c

Figure 4. Lifts of a closed billiard trajectory o with the sequence γ = babacbacbc. For the
sequence γ , nP (γ ) is equal to 1.

4. Transplantability and isolength spectrality

We next consider the length spectrum of the unfolded domain. The length spectrum is the set
of lengths of closed trajectories or periodic orbits on the billiard domain. We first consider the
relation between closed trajectories on the unfolded domain P and its fundamental building
block B. Note that any periodic orbit on P can be regarded as the lift of a closed trajectory
on B, because its projection is always a periodic orbit on B. However, the converse is not
necessarily true. A single closed orbit on B yields N trajectories as its lift on the unfolded
domain P , which are sometimes closed orbits on P but the others not. By the construction
of the adjacency matrixMP

γ , it is easy to see that the number of closed lifts of a given closed
trajectory on B is counted as

nP (γ ) = Tr(MP
γm
MP
γm−1
· · ·MP

γ1
) (10)

where γ = γ1γ2 · · · γm (γi = a, b, c) denotes the sequence representing the order in which
a given closed trajectory on B hits the boundary segments (for example, see figure 4). Such
a sequence is not determined uniquely for a given closed orbit. In fact, if γ = γ1γ2 · · · γm is
a sequence specifying some closed trajectory, then all sequences obtained by its cyclic shift
such as γ2 · · · γmγ1 and γ3 · · · γmγ1γ2 can be regarded as sequences giving the same closed
trajectory. However the number of closed lifts is invariant because of the relation

Tr(MP
γm
· · ·MP

γ2
MP
γ1
) = Tr(MP

γ1
MP
γm
· · ·MP

γ2
MP
γ1
(MP

γ1
)−1)

= Tr(MP
γ1
MP
γm
· · ·MP

γ2
)

= · · · . (11)

Thus the length spectrum of closed trajectories for P is determined by the length spectrum for
B and nP (γ ).

In order that two unfolded domains P and Q constructed by the same-shaped building
block B have the same length spectrum, it is sufficient that the numbers of closed lifts should
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coincide for all possible sequences of γ . It can easily be checked that nP (γ ) and nQ(γ )
are invariant if P and Q are transplantable, i.e. the condition (9) is satisfied for the adjacent
matrices of P andQ. Therefore we obtain the following claim.

Proposition 1. Let P and Q be two unfolded domains obtained by N times successive
reflections of the same building block. If P and Q are transplantable, then nP (γ ) = nQ(γ )
for any sequence γ , which leads to isolength spectrality of P andQ.

The inverse of the above proposition is to inquire whether or not nP (γ ) = nQ(γ ) gives
the sufficient condition for transplantability. The following statement gives the answer: the
condition nP (γ ) = nQ(γ ) is precisely the analogue of the transplantability of eigenfunctions.

Proposition 2. LetP andQbe two unfolded domains obtained byN times successive reflection
of the same building block. If nP (γ ) = nQ(γ ) for any sequence γ , then P and Q are
transplantable, which leads to isospectrality of P andQ.

Proof. We have shown that transplantability implies isospectrality in section 3. Here we will
show that transplantability follows from nP (γ ) = nQ(γ ). Let GP and GQ be the groups
generated by adjacency matrices:

GP = 〈MP
a ,M

P
b ,M

P
c 〉 GQ = 〈MQ

a ,M
Q
b ,M

Q
c 〉. (12)

Since adjacency matrices themselves are also permutation matrices introduced in section 4,GP

andGQ can be supposed to be subgroups of the symmetric group SN , so they are finite. Let F3

be a free group generated by characters a, b and c. We can define the surjective homomorphism

MP : F3 � γ = γ1γ2 . . . γm �−→MP (γ ) = MP
γm
MP
γm−1
· · ·MP

γ1
∈ GP . (13)

We denote by ker MP the kernel of the homomorphism MP , which is the inverse image of
N × N identity matrix E, then GP is isomorphic to the quotient group F3/ ker MP by the
homomorphism theorem. GQ is also isomorphic to F3/ ker MQ in the same way.

We now assume that nP (γ ) = nQ(γ ) for any sequence γ , and note that MP (γ ) = E ⇔
nP (γ ) = N . Then we have

ker MP ≡ {γ |MP (γ ) = E}
= {γ | nP (γ ) = N}
= {γ | nQ(γ ) = N}
= {γ |MQ(γ ) = E} ≡ ker MQ. (14)

This means that the map

) : GP �MP (γ ) �→MQ(γ ) ∈ GQ (15)

can be defined as an isomorphism between GP and GQ. We can suppose identity maps

ρP : GP → GL(N,C) ρQ : GQ→ GL(N,C) (16)

to be linear representations of GP and GQ, respectively. Since GP is isomorphic to GQ,

ρ = ρQ ◦) : GP �MP (γ ) �→MQ(γ ) ∈ GL(N,C) (17)

is another linear representation of GP . Note that nP (γ ) and nQ(γ ) become the characters of
representations ρP and ρ respectively, and they are equal by our assumption. Character theory
tells us that two representations with the same character are similar [11]. This means that there
exists an invertible matrix T such that

TMP
γ = MQ

γ T for any γ. (18)
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This leads to transplantability between P andQ. �
By propositions 1 and 2, we know the equivalence between transplantability and

coincidence of the numbers of closed lifts, which are sufficient conditions for isospectrality and
isolength spectrality respectively. However if we assume transplantability, which is a stricter
condition than isospectrality, then isolength spectrality follows. Conversely, if we assume
coincidence of the numbers of closed lifts as a sufficient condition for isolength spectrality,
then isospectrality follows. Our results can be summarized as the following schema.

isospectrality⇐ transplantability

⇔ ∀γ nP (γ ) = nQ(γ )
⇒ isolength spectrality.

5. List of transplantable pairs for N � 13

As an application of the above propositions, we enumerate isospectral pairs of unfolded
domains whose isospectrality can be verified by the transplantation method. The candidate
space we have to explore is the set UN , which consists of all possible edge-coloured graphs
without cycles, each of which represents an unfolding rule. The absence of cycles guarantees
the unfolded domain to be formed flat for any shaped building block.

The advantage of using the propositions 1 and 2 (and their proof) is that even for the
purpose of listing transplantable pairs (or triplets if possible) we do not have to make pairwise
comparisons. This is because we can regard each relation nP (γ ) = nQ(γ ) as a necessary
condition for the transplantability of P and Q, and use each relation as a ‘filter’ to pick up
transplantable candidates. More precise steps to find out the transplantable pairs are as follows:

(i) For all edge-coloured graphs P in UN , compute the character nP (γ ) for all possible γ .
(ii) Prepare the spectrum of characters {nP (γ )} by ordering the character nP (γ ) according to

an appropriate rule for γ (lexicographical order of sequence γ , for example).
(iii) Pick up the pair of edge-coloured graphs whose character spectra are the same.

According to the proposition 2, if one finds the identical character spectra, i.e. {nP (γ )} =
{nQ(γ )}, they yield the transplantable pairs. One might be afraid that step (i), i.e. enumeration
of the character spectrum, seems to require an infinite number of steps, reflecting the fact that
γ should run over all possible sequences composed of a, b, c. However, this is not the case,
since GP only forms a finite group as mentioned in the proof of proposition 2.

It is interesting to note that coincidence of the ‘ground state’, i.e. nP (γ ) = nQ(γ ) for a
null sequence of γ means that the numbers of building blocks forming the unfolded domains
are equal, which can be read that the areas of the two domains are equal. Also the condition
for the ‘first excited state’, i.e. nP (γ ) = nQ(γ ) where γ = a, b or c, gives the condition for
the length of the boundary to coincide. These geometrical quantities agree with the first and
second terms in the Weyl expansion respectively [1, 12, 13]. The rest of the terms are not so
straightforwardly interpreted as the first two, but still carry some geometrical information. This
can clearly be seen if we limit ourselves particularly to the case where the building block is a
triangle whose vertices are labelled by a, b and c. For example, nP (γ ) for γ = ab represents
the number of corners between the sides a and b on the unfolded domain. In the same manner,
nP (γ ) for γ = abab gives how many corners whose angle is twice the angle between the sides
a and b appear on the domain and so on. The other patterns not constructed by the repetition
of two symbols have no such a clear geometrical meaning.

Applying the above procedure to the edge-coloured graphs up to N = 13, we have
enumerated all possible transplantable pairs, which are listed in table 2. Figure 5 shows
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Table 2. The list of transplantable pairs up to N � 13.

N �UN N �UN
2 3 none 8 450 none
3 3 none 9 1 326 none
4 10 none 10 4 262 none
5 18 none 11 13 566 none
6 57 none 12 44 772 none
7 143 7 pairs 13 148 577 26 pairs

isospectral pairs ever known, which are listed in [9]. Our result completely agrees with the
list of known transplantable pairs presented in figure 5 at least up to N = 13. Note that all 17
examples given in [9] have been generated based on the Sunada method.

6. Summary and discussion

We have shown that transplantability of eigenfunctions on unfolded domains is equivalent
to coincidence of the character spectrum {n(γ )}. The former is a sufficient condition for
isospectrality and the latter for isolength spectrality.

As mentioned in the introduction, if the so-called almost conjugate condition (5) is satisfied
for a pair of subgroups H1 and H2, one knows that the quotients M/H1 and M/H2 are
isospectral, and isolength spectrality of M/H1 and M/H2 simultaneously follows. The first
counter-example of Kac’s original problem has been constructed with this Sunada condition [7].
Once an isospectral pair is obtained based on such a group theoretical argument together with
the orbifold construction, one can easily check the isospectrality of the resulting pair using the
transplantation method. In this way, at the beginning, the transplantation procedure serves only
as a check or demonstration that a given pair of domains is really isospectral. It is uncertain
whether or not there exist transplantable pairs of domains which are not constructed based on
the Sunada condition, while the Sunada condition is a sufficient condition for transplantability.

However, by expressing an explicit condition (5) for transplantability using adjacency
matrices, one notices the similarity between the almost conjugate condition (5) in Sunada’s
theorem and the condition for existence of the non-permutation matrix T in (9). Even if there
exists an invertible matrix T satisfying (9), it is not necessarily true that they give an isospectral
pair because they are congruent if T is merely a permutation matrix. Such a situation reminds
us of the case where the almost conjugate condition (5) is satisfied but the subgroups H1 and
H2 are conjugate, which gives only an isometric pair.

Therefore it would become a natural question to inquire about the relation between the
Sunada construction of isospectral domains and the transplantation method. The numerical
enumeration attempted in section 5 elucidated that at least up to N = 13 all the transplantable
pairs are those pairs derived by Sunada’s method. This suggests the possibility of its
equivalence.

The condition nP (γ ) = nQ(γ ) for all possible sequences of γ , which is equivalent to
transplantability of eigenfunctions, not only provides an efficient algorithm to enumerate
transplantable pairs of planar domains, but has an interesting ‘geometrical’ interpretation:
Some nP (γ ) can straightforwardly be interpreted as the coefficients of Weyl expansion as
mentioned in section 5.

The transplantation method, on which we have relied in this paper, is available only to
the class of unfolded domains. Whether isospectrality is equivalent to isolength spectrality in
more general domains is still an open problem.
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Figure 5. Known isospectral pairs of domains represented as an edge-coloured graph. Three
colours of edges are distinguished by the types of line (solid, zig-zag, double), and their loops are
omitted. Note that if the colours of edges are permuted the resulting pairs also become isospectral.
For example, the pair 72 represents three distinguishable pairs of domains for a fixed building block.
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